作者单位
摘要
1 本源量子计算科技(合肥)股份有限公司, 安徽 合肥 230088
2 中国科学技术大学中国科学院量子信息重点实验室, 安徽 合肥 230026
量子比特的高效拓展是量子计算获取量子加速优势需要解决的基本问题, 分布式量子计算 (DQC) 因其高度可行性和灵活性, 成为解决量子比特拓展问题的关键技术之一。根据芯片间通信方式的不同, 分布式量子计算可以分为基于量子隐形传态和基于量子线路拆分的分布式量子计算两种类型, 前者主要面向容错量子计算, 而后者被认为可在中等规模含噪声量子 (NISQ) 时代有效提升量子计算机算力。从长远角度来看, 作为量子网络的主要应用之一, 分布式量子计算可以更好地整合接入量子网络的海量量子计算机以解决高难度问题。首先介绍了分布式量子计算的来源和类型, 在此基础上, 给出了两类分布式量子计算的基本原理和发展状况, 以及关注度较高的应用算法和编译优化方法。
量子信息 分布式量子计算 量子隐形传态 量子线路拆分 quantum information distributed quantum computing quantum teleportation quantum circuit cutting 
量子电子学报
2024, 41(1): 1
Author Affiliations
Abstract
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
4 State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
5 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
6 Frontiers Science Center for Nano-optoelectronics, Collaborative Innovation Center of Quantum Matter, Peking University, Bejing 100871, China
7 School of Physics and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
8 National Innovation Institute of Defense Technology, AMS, Beijing 100071, China
With high integration density and excellent optical properties, silicon photonics is becoming a promising platform for complete integration and large-scale optical quantum information processing. Scalable quantum information applications need photon generation and detection to be integrated on the same chip, and we have seen that various devices on the silicon photonic chip have been developed for this goal. This paper reviews the relevant research results and state-of-the-art technologies on the silicon photonic chip for scalable quantum applications. Despite the shortcomings, the properties of some components have already met the requirements for further expansion. Furthermore, we point out the challenges ahead and future research directions for on-chip scalable quantum information applications.
Photonics Research
2022, 10(10): A135
Author Affiliations
Abstract
1 CAS Key Laboratory of Quantum Information, , Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, , Hefei 230026, China
The ultracold molecule is a promising candidate for versatile quantum tasks due to its long-range interaction and rich internal rovibrational states. With the help of the cavity quantum electrodynamics (QED) effects, an optical cavity can be employed to increase the efficiency of the formation of the photoassociated molecules and offers a non-demolition detection of the internal states of molecules. Here, we demonstrate the production of the high-finesse optical fiber microcavity for the Rb2 molecule cavity QED experiment, which includes the fabrication of fiber-based cavity mirrors, testing, and the assembly of ultra-high vacuum-compatible optical fiber microcavity. The optical fiber microcavity offers high cooperativity between cavity mode and ultracold molecule and paves the way for the study of molecule cavity QED experimental research.
optical fiber microcavity ultracold molecule molecule cavity quantum electrodynamics 
Chinese Optics Letters
2022, 20(12): 122702
李锦 1,2王丕屿 1,2王正瑜 1,2牛睿 1,2[ ... ]董春华 1,2
作者单位
摘要
1 中国科学技术大学 中国科学院量子信息重点实验室,安徽 合肥 230026
2 中国科学技术大学 中国科学院量子信息和量子物理协同创新中心,安徽 合肥 230026
具有高品质因子(Q 值)的光学谐振腔能够长时间将光束缚在较小的模式体积内,极大地增强了光与物质的相互作用,成为集成光学器件中具有重大潜力的重要组成部分。聚焦于目前广泛应用于集成非线性光学领域的氮化硅材料平台,为了解决大尺寸氮化硅微环腔由拼接误差、表面粗糙等因素导致的散射损耗较大的问题,进行了一系列的工艺改进以提高大尺寸氮化硅微环腔的品质因子。结果表明:通过薄膜再沉积工艺可以有效降低氮化硅波导的散射损耗,半径为560 μm的大尺寸氮化硅微环腔的本征Q值得到了平均26% 的提升。得益于提高的微腔Q 值,在氮化硅微环腔中实现了重复频率40 GHz 的光学频率梳。
氮化硅微环腔 品质因子 光学频率梳 silicon nitride microring resonator quality factor optical frequency comb 
红外与激光工程
2022, 51(5): 20220302
卢奉宇 1,2,3银振强 1,2,3,*王双 1,2,3,**王泽浩 1,2,3[ ... ]韩正甫 1,2,3
作者单位
摘要
1 中国科学技术大学中科院量子信息重点实验室, 安徽 合肥 230026
2 中国科学技术大学量子信息与量子科技前沿协同创新中心, 安徽 合肥 230026
3 密码科学技术国家重点实验室, 北京 100878

测量设备无关量子密钥分发协议可以免疫所有测量端的漏洞,极大地推进量子保密通信的实用化进程。美中不足的是,该协议依然对源端有极强的安全性假设。源端设备的非完美性同样会留下多种侧信道,从而威胁系统的实际安全性。针对此问题,提出无特征源测量设备无关量子密钥分发协议。该协议在量子态制备不完美的情况下依然可以提取出安全的密钥,是理论无条件安全性与实际安全性的完美结合。通过三强度诱骗态方法以及自行研制的Sagnac-Asymmetric-Mach-Zehnder编码结构,成功搭建无特征源的测量设备无关量子密钥分发系统,并在长为50.4 km的光纤信道和25 MHz的系统重复频率下达到1.91×10 -6的安全密钥分发速率。

量子信息 量子通信 量子加密 量子密钥分发 
光学学报
2022, 42(3): 0327017
Le Yu 1,2Xiao Xiong 1,2Di Liu 1,2Lantian Feng 1,2[ ... ]Xifeng Ren 1,2,*
Author Affiliations
Abstract
1 Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei, 230026, China
2 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
3 Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, 230026, China
Higher emission rates and controllable emission direction are big concerns when it comes to finding a good single photon source. Recently, surface plasmons are introduced to this application, as they can manipulate and enhance the luminescence of single emitters. Here, we experimentally achieve a wide-area multiple directional enhanced light source through periodic metal grating structures. The surface-plasmon-coupled emission can have multiple precisely emission angles by just changing the period of the grating. Our result indicates that metal plasmonic grating can be used as a productive quantum device for unidirectional quantum light sources in quantum optics.
240.6680 Surface plasmons 070.0070 Fourier optics and signal processing 
Chinese Optics Letters
2017, 15(8): 082401
Author Affiliations
Abstract
1 Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
2 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Loss is inevitable for the optical system due to the absorption of materials, scattering caused by the defects, and surface roughness. In quantum optical circuits, the loss can not only reduce the intensity of the signal, but also affect the performance of quantum operations. In this work, we divide losses into unbalanced linear losses and shared common losses, and provide a detailed analysis on how loss affects the integrated linear optical quantum gates. It is found that the orthogonality of eigenmodes and the unitary phase relation of the coupled waveguide modes are destroyed by the loss. As a result, the fidelity of single- and two-qubit operations decreases significantly as the shared loss becomes comparable to the coupling strength. Our results are important for the investigation of large-scale photonic integrated quantum information processes.
270.0270 Quantum optics 
Chinese Optics Letters
2017, 15(9): 092701
Author Affiliations
Abstract
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Generation of a cavity-enhanced nondegenerate narrow-band photon pair source is a potential way to realize a perfect photonic quantum interface for a hybrid quantum network. However, to ensure the high quality of the photon source, the pump laser for the narrow-band photon source should be generated in a special way. Here, we experimentally generate the blue 453 nm laser with a sum frequency generation process in a periodically poled lithium niobate waveguide. A 13 mW laser at 453 nm can be achieved with a low-power 880 nm laser and 935 nm laser input, and the internal conversion efficiency is 21.6% after calculation. The frequency of a 453 nm laser is stabilized by locking two pump lasers on one ultrastable optical cavity. The single pass process without employing cavity enhancement can ensure a good robustness of the whole system.
270.5585 Quantum information and processing 140.3613 Lasers, upconversion 
Chinese Optics Letters
2017, 15(12): 122701
Author Affiliations
Abstract
Spin (polarization) is widely used in free-space optics, while in photonic integrated circuits (PICs), information is usually encoded in optical route. So a practical way to connect these two encoding methods is necessary for information communication. In this letter, an encoding convertor is designed to connect spin encoding and route encoding. Finite element method is used to calculate the conversion efficiency and extinction ratio of the encoding convertor and the theoretical analyses are also given. Our protocol shows a friendly way to convert optical spin information to route information, which will promote the compatibility of free-space optics and PICs.
240.6680 Surface plasmons 250.5300 Photonic integrated circuits 230.5440 Polarization-selective devices 
Chinese Optics Letters
2014, 12(7): 072401
Author Affiliations
Abstract
1 Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
By using CdSe/ZnS quantum dots (QDs), we study the effect of cavity quantum electrodynamics on the coupling of the microtoroid cavity. When with whispering gallery (WG) modes, the microtoroid cavity demonstrates high quality factor and small mode volume at visible wavelengths. Accordingly, fiber tapers allow QDs to adhere into the cavity and further permit the control of site-selected coupling. From the luminescence spectra, QDs are modulated effectively by cavity modes. Variable modulations are observed by changing QD coupling conditions. Therefore, based on experimental and theoretical research, strong and tunable Purcell enhancement can be realized by this system.The authors thank Jinming Cui and Chunhua Dong for their helpful discussion. This work was supported by the National Fundamental Research Program of China (No. 2006CB921900), the National Natural Science Foundation of China (Nos. 60537020 and 60621064), and the Knowledge Innovation Project of the Chinese Academy of Sciences.
光纤锥 微芯圆环 腔量子电动力学 量子点 020.5580 Quantum electrodynamics 140.3945 Microcavities 060.2310 Fiber optics 
Chinese Optics Letters
2010, 8(7): 709

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!